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Abstract
We introduce a new technique, component-based garbled circuits, for increasing the efficiency of secure

two-party computation in the offline/online semi-honest setting. We observe that real-world functions
are generally constructed in a modular way, comprising many standard components such as arithmetic
operations and other common tasks. Our technique allows circuits for these common tasks to be garbled
and shared during an offline phase; once the function to compute is specified, these pre-shared components
can be chained together to create a larger garbled circuit. We stress that we do not assume that the
function is known during the offline phase — only that it uses some common, predictable components.

Improving on the above technique, we give a second method of chaining, which we call single com-
munication multiple connections (SCMC) chaining, which allows blocks of consecutive wires holding
multi-bit pieces of data to be connected between components with only a single transmitted wire label.
This means that connecting components requires minimal communication.

Finally, we give an implementation, CompGC, of these techniques and measure the efficiency gains
for various examples. We find that our techniques result in roughly an order of magnitude performance
improvement over the best known standard garbled circuit-based secure two-party computation.

1 Introduction
Secure two-party computation allows a pair of parties, each with private input, to compute a function of
those inputs without sharing them with each other. This is an extremely powerful tool, and it was shown by
Yao to be feasible using an approach termed garbled circuits [30]. Since then, a long line of work has aimed
to increase the efficiency of garbled circuit-based secure computation. This paper continues that effort.

In particular, our goal is to allow the use of offline pre-processing to significantly reduce online compu-
tation time for garbled circuit-based computation. This is not a new goal. Beaver, for example, showed
how precomputation can significantly increase the online speed of the required oblivious transfers (OTs) [3].
Others have found similar ways to increase the online efficiency of the cut-and-choose technique needed for
malicious security [13, 18, 19]. There is also a long history of precomputation in the setting of non-garbled
circuit-based two-party computation [6, 25].

In the semi-honest setting in which all of our constructions work, it has long been known that precom-
putation can greatly increase efficiency if the function is known ahead of time, with only the inputs specified
at the time of online computation. The protocol is simple: the garbler computes the entire garbled circuit
ahead of time, with only OT computations (which can also be preprocessed, but still require some online
communication), communication of the inputs, and evaluation done online. However, requiring that the
function be known ahead of time is a substantial limitation.

In this work, we show a way to achieve a similar benefit without prior knowledge of what circuit will be
computed. Towards this goal, we note that most functions of interest to compute securely are built in a
modular way. Just as one would use functions in a programming language, the circuits for these functions use
components that perform common tasks. There might be a portion of the circuit that takes the maximum
of two numbers, for example, or that computes a hash function. We show that one can precompute garbled
circuits for these smaller components and then chain them together in the online phase when the function to
be computed is specified. We call this component-based garbled circuit construction. We show cryptographic
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protocols for carrying it out, and we provide an open-source implementation, CompGC, that achieves large
efficiency gains, upwards of an order of magnitude improvement in online computation time, versus standard
garbled circuit-based secure two-party computation.

We can imagine this system being used in two different ways. The first is to precompute garbled compo-
nents of types that are common in a small class of functions from which the user knows the actual function
will be drawn. For example, maybe the users know they will be computing edit distance between two genetic
sequences, but they do not know what the length of each sequence will be. Even this small bit of uncer-
tainty is sufficient to render the naive precomputation scheme discussed above useless. However, by sharing
standard components that will be used for any such calculation, we make it so that the computation time
once the inputs (including their lengths) are specified is greatly reduced. (Computing Levenshtein distance
on arbitrary-length input is one of the use cases we investigate with experimental measurements.)

The second method is to develop an extensive library of components that would be useful for large classes
of realistic functions. This would be useful if the parties in question are carrying out extensive computations
over time, and are computing a wide array of possible functions. Here the library might include components
for arithmetic operations, both simple (e.g., multiplication) and more complex (e.g., matrix inversion). It
might contain common cryptographic primitives, text-processing methods, and other common subroutines,
just as a standard library would for a programming language. And, just as with writing code, we expect
most functions would need only minimal use of unstructured logic gates, instead relying mostly on these
premade components.

Of course, these two methods are really just the two extreme ends of a spectrum. In between, there
might be application-specific libraries that greatly increase the efficiency of cryptographic computations, or
of machine learning computations, etc.

1.1 Our Contributions
We provide theoretical contributions describing two variants of component-based garbled circuits and showing
that these constructions are secure. We then give a practical, open-source implementation, CompGC, that
we use to experimentally show the significant efficiency improvements that these techniques can allow.
Specifically, we make the following contributions.

Component-based garbled circuits. We give a protocol for precomputing garbled circuits for given
components, and for combining these components as needed at runtime. We show that security is maintained
by this protocol. This construction allows arbitrary linkage between component wires while requiring online
communication of only one label per component input wire. We note that this technique is very similar to
the “partial garbled circuits” of Mood et al. [22], although it was used for a different purpose in that work
and, as described, required two labels per connection, whereas we only need a single label per connection.

Single communication multiple connections (SCMC) chaining. Our initial protocol specifies how
each wire is connected between protocols and for each connected pair of wires sends a mask to the evaluator
that is used to convert values in the appropriate way. However, frequently large sets of consecutive output
wires represent single pieces of data (e.g., numbers or strings). These blocks of consecutive output wires
are then mapped to an equal-length block of consecutive input wires in another component. We give a
method for mapping consecutive output wires of one component to consecutive input wires of another while
only sending a single value. We call this method “single communication, multiple connections” (SCMC)
chaining, and it greatly reduces the communication cost of our protocol. This is somewhat analogous to the
SIMD-style computation on multi-bit values that is done in the homomorphic encryption literature [29] and
for GMW-based two-party computation [7, 28].

CompGC implementation. We develop our own standalone library libgarble1 for garbling circuits.
Our library is a based on the JustGarble implementation of Bellare et al. [4], but makes many internal
improvements to the codebase. None of these improvements constitute theoretical improvements to the
underlying algorithm, but rather optimizations of the code. For example, we revise the data structure by

1https://github.com/amaloz/libgarble
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which circuits are stored in order to speed access to certain data. We believe this is a valuable contribution
on its own, and is relevant even when not using our component-based precomputation strategy. Our library
improves the performance of garbling and evaluating an AES circuit by 10% and 22%, respectively, as
compared to JustGarble, along with many other improvements, including support for half-gates [31] and
privacy-free garbled circuits [?] alongside a consistent API.

We then use libgarble as a building block to create a complete secure computation system, CompGC.
This tool allows parties to precompute any specified library of components during the offline phase, using
libgarble to garble each component. During the online phase, it creates a series of instructions for the
evaluator that allows the chaining of the relevant components, and it handles the extra computation (outside
of garbling and evaluation) that is required to distribute the input wire labels and decipher the output wire
labels.

Experimental results. We use this implementation to conduct several experiments. We consider three
settings: (1) computing AES using a single-round AES component as a building block; (2) using this single-
round AES component to allow for encryption of arbitrary messages (of arbitrary length) using CBC mode;
and (3) computing Levenshtein distance, which can be used for any number of applications, including text
processing and genetic analysis. Here, again, we are eliminating the need to know the input length before
computation. We measure total online time required to perform the secure computation over both localhost
and a simulated realistic network configuration. In all of these measurements, we see substantial efficiency
improvements due to precomputation. As an example, when computing Levenshtein distance between two 60
symbol strings, where each symbol comes from an 8-bit alphabet, we see a greater than order of magnitude
improvement (from 10.6 seconds to 752 milliseconds to securely evaluate the function) when using our
approach over the naive approach of sending the circuit online. See Section 7 for more details.

All of our work is done in the semi-honest model. We believe there are many use cases of secure
computation for which semi-honest security is sufficient. For example, when two mutually trusting companies
or agencies are prevented from sharing data by policy or legal restrictions, but otherwise trust each other
to behave honestly. We also view semi-honest security as a natural stepping stone, and we expect these
techniques can, with additional work, be extended to the malicious setting as well.

1.2 Paper Organization
The remainder of this paper is organized as follows. Section 2 summarizes the related prior work. Section 3
provides background information on garbled circuits and secure two-party computation, introducing the
necessary notation that we use in the remainder of the paper. Section 4 describes our component-based
garbled circuit technique. Then, Section 5 describes our improved single communication multiple connections
garbled circuit chaining protocol. Section 6 provides the details on our prototype implementation of the
described primitives and Section 7 gives the experimental results evaluating the performance of our schemes
for several common classes of functions. We conclude in Section 8.

2 Related Work
Garbled circuits were first introduced by Yao in the 1980s [30] as a tool for general secure two-party computa-
tion. While they were originally viewed mainly of theoretical interest, this view has changed significantly over
the past decade or so. Starting with the Fairplay system of Malkhi et al. [21], garbled circuits have been built
into prototypes of secure computation. This has led to a long line of work (e.g. [4, 11, 12, 16, 19, 20, 22, 26])
that aims to improve the efficiency of garbled circuits and to build usable and practical systems for various
real-world applications. Out of this work, the most efficient known implementations (not using specialized
massively-parallel hardware [16]) of general garbled circuit-based computation are JustGarble [4] for security
against a semi-honest adversary, and the “Blazing Fast 2PC” system [19] for the malicious setting.

One method for increasing the efficiency of garbled circuit-based secure computation is to work in the
offline/online model and use preprocessing to reduce the online running time. A substantial line of work
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has focused on reducing the cost of the cut-and-choose technique [17] for malicious security using prepro-
cessing [13, 18, 19]. However, all of these works require that the function to compute be defined during the
pre-processing phase. Our goal is to allow the benefits of pre-processing even when one knows little about
the function that might be computed.

In attempting to increase the online efficiency of secure computation, we are guided by many prior works
that identified as a major bottleneck the time and bandwidth necessary to transmit the garbled circuit to the
evaluator. Several works [14, 15, 24, 26, 31] aim to reduce the size of the circuit that must be communicated
between the generator and evaluator. We see this paper as continuing this effort, aiming to reduce the
amount of communication necessary in the online phase of garbled circuit evaluation. While we do not
further reduce the overall size of the garbled circuit to be transmitted, we significantly reduce the amount
of communication necessary in the online phase, after the function to compute and the inputs are chosen.

As communication is the main bottleneck, Gueron et al. [10] argue that the speed improvements made
by JustGarble disappear due to the need to transmit the circuit. Because we send the circuit components
in the offline phase, communication is no longer the bottleneck and we can thus reap all the performance
benefits of using a JustGarble-based garbling library.

The idea of breaking circuits into smaller pieces appeared previously in the work of Mood et al. [22], where
it was called “partial garbled circuits”. Rather than use it to reduce online computation and communication
time as we do here, Mood et al. used it as a way to reuse values in internal gates of a garbled circuit across
multiple computations. Their technique also requires sending two correction labels per wire, whereas we can
do it with just one. Also, our SIMD-style blockwise technique for chaining components together does not
have a parallel in their work.

Finally, secure computation of single-instruction, multiple data (SIMD) operations has previously been
studied in the context of homomorphic encryption [29] and in the context of secure computation based on the
GMW protocol [7, 28]. However, to the best of our knowledge, our work is the first to apply this paradigm
to garbled circuits. SCMC achieves significant savings in communication in a way that is very analogous to
what is done with SIMD computation.

3 Preliminaries
In this section we briefly introduce the notation and key primitives that we use, as well as some background.

3.1 Garbled Circuits
Garbled circuits are the main tool used for all of our constructions. Our presentation here follows [10, 18]
which is adapted from [5], and we refer the reader to those works for a more detailed presentation.

Garbled circuits, proposed originally by Yao [30], are a way of encoding a Boolean circuit that allow
for secure evaluation of the function computed by that circuit. This encoding has the property that given
encodings of values for each input wire, it is possible to evaluate the function computed by this circuit (i.e.,
learn the values of the output wires) without learning the values of the input wires or any of the internal
circuit wires. This enables two-party secure computation where one party produces the garbled circuit and
the input labels, and the other party evaluates the circuit to produce the output. This is described in more
detail in Section 3.3.

More formally, a garbling scheme consists of two algorithms (Garble,Eval). On input a security
parameter 1κ and a circuit C, Garble(1κ, C) returns the triple (GC, e, d) where GC is the garbled circuit,
e is the ordered set of input wire labels {(W 0

i ,W
1
i )}i∈Inputs(C), and d is the ordered set of output labels

{(W 0
i ,W

1
i )}i∈Outputs(C).

Given a garbled circuit GC and a set of input labels X = {W xi
i }i∈Inputs(C), Eval(GC,X) computes the

garbled output Z such that using the set d, it is possible to recover the actual output z (i.e., by finding Z
in the ordered set of output labels).

Example. The most straightforward example of a garbled circuit is Yao’s original scheme. Each wire wi
has two associated labels, W 0

i and W 1
i , corresponding to values 0 and 1 respectively. For each gate there
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w0 label w1 label wout label garbled table entry

W 0
0 W 0

1 W 0
out EncW 0

0
(EncW 0

1
(W 0

out))
W 0

0 W 1
1 W 0

out EncW 0
0

(EncW 1
1

(W 0
out))

W 1
0 W 0

1 W 0
out EncW 1

0
(EncW 0

1
(W 0

out))
W 1

0 W 1
1 W 1

out EncW 1
0

(EncW 1
1

(W 1
out))

Table 1: Garbled AND Gate. Only the values in the last column are sent to the evaluator. If the input wires have
values a and b, then the evaluator knows W a

0 and W b
1 and can therefore decrypt W a∧b

out .

is a table like Table 1. This table contains encryptions of the labels for the gate’s output wire, using the
labels of the input wires as keys. The encryptions are chosen so that the evaluator, knowing the labels of the
two input wires, can decrypt the proper label of the output wire (and nothing else). Repeated evaluation
of gates then propagates knowledge of the correct wire labels (for whatever initial input labels were given)
through the entire circuit.

Privacy. In order to be useful for secure two-party computation, it is necessary that garbled circuits satisfy
the following privacy notion. The values seen by the evaluator, GC, d, and X, should not reveal any infor-
mation about x that is not revealed by the output C(x). Formally, we require that there exist a polynomial
time simulator S that on input (1κ, C, C(x)) outputs a simulated garbled circuit that is indistinguishable
from (GC, e, d) generated by Garble. Since S knows C(x) but not x, this captures the fact that the output
of Garble does not reveal anything (else) about x.

Free-XOR. Our constructions make use of one critical improvement to the original garbled circuits called
free-XOR [15], which allows for XOR gates to be evaluated “for free” without requiring any garbled tables
to be included in the garbled circuit. Specifically, this technique works by choosing a global random value
R and then ensuring that the labels for all circuit wires have a difference of R. That is, for any wire wi,
W 0
i ⊕W 1

i = R. This enables the secure evaluation of an XOR gate by simply computing the XOR of the
two incoming labels, as R cancels out appropriately.

3.2 Oblivious Transfer (OT)
Another key component for secure two-party computation is oblivious transfer (OT) [8, 27]. OT is a two-
party primitive where one party (the sender) has as input two κ-bit strings (m0,m1) and the other party
(the receiver) has a bit b. OT enables the receiver to receive mb from the sender, while preventing the sender
from learning which string was received (the value of b) and preventing the receiver from learning anything
about m1−b. In this paper we use the semi-honest OT construction by Naor and Pinkas [23].

One technique for optimizing OT that we make critical use of is OT preprocessing [3]. OT preprocessing
allows splitting any OT protocol into an expensive offline phase and a much cheaper online phase. Specifically,
in the offline phase, before the inputs are known, OT is performed on random inputs for both the sender and
receiver. This requires a number of expensive cryptographic operations. However, in the online phase the
pre-OT’d values are used to perform the OT on the parties’ actual inputs without needing any additional
expensive operations.

3.3 Secure Two-Party Computation
We now briefly describe how garbled circuits and oblivious transfer can be used to realize secure two-party
computation. That is, to enable two parties to compute a joint function on their inputs without either party
learning more than what is implied by its input and output. In this work we focus on two-party computation
that is secure against a semi-honest adversary corrupting either of the two parties. That is, such an adversary
follows the protocol as specified, but attempts to learn extra information from its interactions. For a formal
treatment of the security of two-party computation we refer readers to the book by Goldreich [9].
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In garbled circuit-based two-party computation of circuit C, we identify the two parties as the garbler
who has input x and the evaluator who has input y. The garbler first runs Garble(C) to produce (GC, e, d).
He then sends GC and an encrypted form of d to the evaluator together with the wire labels corresponding
to the bits of the garbler’s input x. The encrypted form D of d corresponds to a random permutation of
{EncW 0

i
(0),EncW 1

i
(1)}i∈Outputs(C).

Now, for each bit of the evaluator’s input y, the garbler and evaluator run an OT protocol by which
the evaluator learns the appropriate wire label (without revealing that bit of y to the garbler). Now, the
evaluator has all the inputs to run Eval(GC,X) to recover the output wire labels. It then uses these wire
labels to decrypt the entries in D to learn the appropriate output. If output by both parties is desired, the
evaluator can send this output to the garbler.

4 Component-Based Garbled Circuits
As our first contribution, we introduce the concept of component-based garbled circuits to allow for much
of the work involved in building and transmitting a garbled circuit to be done in an offline phase before
the inputs or even the function to compute are known. This allows us to significantly improve the online
performance of secure two-party computation schemes using garbled circuits. Our improvements stem from
the observation that a common way to build circuits (and programs) is to compose them out of common
building blocks or components. For example, common components such as circuits for arithmetic operations,
cryptographic functions, and text processing can form the base for large classes of general computation.

We show how to take advantage of such common components for designing efficient garbled circuits.
Specifically, our approach is to pre-garble a large number of common component circuits in an offline phase.
Note that we do not need to know the computation to be performed (besides the generic components used
to create said computation) or the inputs during this offline phase. Then, in an efficient online phase, we
show how to link these components to form the actual circuit we wish to compute. The main benefit of
this approach is that we only need to send a single wire label for each input wire of the components that
the circuit is composed of. This is often much less than the size of the circuit to be computed. In fact,
even if the components consist of single gates, our online communication corresponds to sending only one
label per wire, which is half the size of the best known garbled circuit construction [31]. Since the time
to communicate the garbled circuit is the major bottleneck, this leads to significant savings in the overall
garbled circuit computation; see Section 7 for details.

More technically, a component-based garbling scheme is a triple of algorithms (Garble,Link,Eval).
Garble and Eval are variants on the corresponding methods for standard garbled circuits, while Link is
new.

Garble. The Garble procedure is unchanged, but now is given a component c as input (in place of a
complete circuit C). Garble(c) outputs the garbled component GCc, input wire set ec, and output wire
set dc, for this component.

Link. On input two garbled components c0 = (GC0, e0, d0) and c1 = (GC1, e1, d1) as well as a mapping of
output wires of c0 to input wires of c1, Link produces the link labels needed to convert from c0 output wires
to c1 input wires. Specifically, suppose that output wire wi of c0 has labels (W 0

i ,W
1
i ) and input wire wj

of c1 has labels (W 0
j ,W

1
j ). Then, to link these two wires, Link outputs Wij = W 0

i ⊕W
0
j . Note that since

we use the free-XOR optimization, we know that both W 0
i = W 1

i ⊕R and W
0
j = W

1
j ⊕R for some random

value R. Therefore, we have that W 0
i ⊕W

0
j = W 1

i ⊕W
1
j , so a single label Wij is sufficient to connect both

the zero and the one wire labels. This allows us to reduce the communication necessary to one label per
component wire (together with a specification of which wire to link to which wire).

Eval. On input a list of garbled components {ci} and linking labels {Wij}, Eval computes the garbled
outputs {Yi} as follows. Starting from the inputs, Eval proceeds component by component, evaluating each
component to get the component output wire labels. When appropriate, it uses these component output
wire labels together with the appropriate link labels to recover the input labels for later components. Finally,
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once all the components are evaluated, Eval recovers the garbled outputs {Yi} from the output components
and uses d for that component to recover the (real) output y.

For details on the exact garbling scheme used to garble the components, the format for indicating which
wires to link, and several further optimization improvements, we refer the reader to the implementation
details in Section 6.

Privacy. We now show how to adapt the standard privacy definition for garbled circuits [5] to the component-
based setting. Specifically, for a set of components {ci}i∈Components, we want that the pre-garbled components
{GCi}, together with the input labels {W xj

j }j∈Inputs(C), and the output map dCout
as well as all the link

labels {Wij}i,j∈Components do not reveal any information about x. Formally, as in the case of garbled circuits,
we require that there exist a polynomial time simulator S that on input (1κ, C, C(x)), where C(·) is some
polynomial size circuit, outputs simulated component garbled circuits for all components in C, input and
output labels, as well as all the linking labels Wij for linking all necessary wires that are indistinguishable
from ({GC}i, eInput(C), dOutput(C)) and Wij generated by the real Garble and Link procedures. Formally,
security is captured by the following game:

The privacy experiment Exptpriv
A,S(κ):

1. Invoke adversary A: compute (C, x)← A(1κ).
2. Choose a random b ∈R {0, 1}.
3. If b = 0: For each component ci in C, compute (GCi, ei, di)← Garble(1κ, c). Additionally,

for each pair of components (ci, cj) that need to be linked, compute all the link labels
{Wij} ← Link(ci, cj). Finally, compute input labels X = {W xi

i }i∈Inputs(C) and output map
dOutput(C). Then output challenge τ = ({GCi}, {Wij}, X, dOutput(C)).
If b = 1: Compute τ = ({GC}i, {W}ij , X, dOutput(C))← S(1κ, C, C(x)).

4. Give A the challenge τ and obtain a guess b′ ← A(τ).
5. Output 1 if and only if b′ = b.

Definition 1. A component-based garbled circuit scheme achieves privacy if for every probabilistic polyno-
mial time A there exists a probabilistic polynomial time simulator S and a negligible function µ(·) such that
for every κ ∈ N:

Pr
[
Exptpriv

A,S(κ) = 1
]
≤ 1

2 + µ(κ)

4.1 Component-Based Secure Two-Party Computation
We now briefly describe how to use component-based garbled circuits for secure two-party computation.
In an offline stage, before inputs or even the computation to be performed are known, the garbler runs
Garble on a number of components to pre-garble these components; it then sends {GCi}i∈Components and an
encrypted form D of dOutput(C) (as specified in Section 3.3) to the evaluator. These components are circuit
building blocks that comprise the eventual computation; however, their exact linking is not determined at
this time. In parallel, the garbler and evaluator preprocess a number of instances of OT. Both the garbler
and the evaluator store the received garbled components and preprocessed OTs.

When the function f to compute and the inputs (x, y) are known, the garbler assembles the circuit C
out of the garbled components {ci}. For each component pair that needs to be linked, the garbler runs
Link(ci, cj) and sends the link labels Wij along with the indices of the wires to be linked to the evaluator.
Additionally, the garbler sends the input labels {W xi

i } for the garbler’s inputs. Finally, the garbler and
evaluator complete the online phase of the OTs to retrieve the labels {W yi

i } for the evaluator’s input. Given
this information, the evaluator runs Eval to compute the circuit.
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4.2 Analysis
To analyze the performance of component-based 2PC, we look separately at the online and offline phases. In
the offline phase the garbling and transmission of garbled components is similar to the total communication
normally done to garble and send a circuit. However, this communication can be done offline thus not
effecting the online running time. The online phase, on the other hand, only sends one link label per pair of
wires connecting any components. So, in total, the online communication necessary is just one label for each
component input wire (along with information on which input wires map to which output wires). We note
that, even in the case when components are just single gates, this still enables us to achieve communication
of one label per gate (and XOR gates remain free). This is 50% savings over the best known construction [31]
(again, discounting the metadata required to link these wires together). In the more realistic case, where
components are substantially larger, the savings can be much greater.

4.3 Security
We now sketch a proof of security for our offline/online construction. Roughly, what we need to prove is that
the added linking labels do not break the security of the original garbled circuit construction. More formally,
we need to show a simulator that, given the output y, is able to generate simulated garbled components and
linking labels that would look indistinguishable from the true garbled circuit.

We must consider the view of each party, where the “view” includes any messages received during the
protocol. (Values computed and sent by a party themselves cannot give them additional information.) First
we note that the view of the garbler in this construction only consists of its side of the OT protocol executions.
This is the same as its view in the standard garbled circuit protocol, so no additional security argument is
needed.

Next we consider security against a semi-honest evaluator. Roughly, we can use a slightly modified version
of the standard garbled circuit simulator. This simulator produces a garbled circuit GC for the overall circuit
C. The simulator then divides this circuit into components matching the components that were pre-garbled
by the protocol. These garbled components are then modified as follows. For each output wire wi of each
linked component, a random label Ŵi is chosen and is XORed with the output wire label. The result is
a new label for each output wire. (The tables in the final gate before each output wire are modified to
match the new values.) The output wires still have truly random labels, so these simulated values are still
indistinguishable from the evaluator’s true view. We now simply note that the random values Ŵi for each
component output wire serve as the simulated linking value that would connect each component’s output
to the relevant input wires of the next component. They have the same mathematical relationship to the
wire labels as the true linking values do. Therefore the simulator has produced a complete simulation of the
evaluator’s view, and security is achieved.

5 SCMC Garbled Circuits
Building on our construction for component-based garbled circuits we introduce a new technique called
single communication multiple connections (SCMC) chaining that allows further optimization of the online
communication for a specific subclass of computations. Specifically, we observe that frequently large blocks
of consecutive output wires really represent a single piece of data (e.g., numbers or strings). Thus, these
blocks of consecutive wires are likely to be mapped in order to another component where they are used in
further computation. Our SCMC construction takes advantage of this to provide much more efficient linking
for such blocks of wires. Specifically, we send only one link label for the entire block, instead of one label
per wire in our original construction. We note that we can also represent general computation in this way
by introducing permutation components that rotate the wires for linking, but this will likely result in too
many different components that need to be pre-garbled to be practical.

We achieve this performance gain by modifying how components are garbled (with security holding in the
random oracle model). Specifically, we choose the labels for the input and output wires of all components
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in a fixed, correlated way. This is done in a way that guarantees that the differences between linked labels
will be the same for all the wires in a block. Thus, sending this single difference is sufficient. Specifically, we
slightly modify our construction as follows.

Garble. During garbling, for every component choose two random base values A and B and a random
value T . We assume that all parties have access to a random oracle H. Then, set the input wire label W b

i

corresponding to wire i and bit b to A⊕H (T ⊕ (i‖b)). For every output wire label, set it to B⊕H(T⊕(i‖b)).

Link. To link the output of component c0 to the input of component c1, it is sufficient to send the single
link label Bc0 ⊕Ac1 . This achieves the desired effect since, for any wire i and bit b:

(Bc0 ⊕H(T ⊕ (i‖b)))⊕ (Bc0 ⊕Ac1) = Ac1 ⊕H(T ⊕ (i‖b))

Eval. Same as before.

5.1 Analysis
The SCMC approach significantly reduces the communication needed for out component-based secure com-
putation. Specifically, we now only need online communication complexity of a single label per block of wires
to connect. In the extreme case where such blocks form entire components, this requires only one link label
per component.

5.2 Security
We briefly sketch the proof of security. We prove security when H is modeled as a random function. Since
our garbling library libgarble implements garbling schemes secure in the random permutation model [4],
this does not introduce any additional assumptions.

As before (cf. Section 4.3), the simulation for a semi-honest garbler is trivial. The simulation for a semi-
honest evaluator is exactly the same as before, except that instead of choosing random label Ŵi per wire,
we choose Ŵ per component, and XOR this label with all output wire labels of the component. Now, Ŵ
servers as the linking value.

The security argument here similar to as before. Namely, the output wire labels of each component still
have truly random labels. However, in this setting the evaluator can query the random oracle H, and can
distinguish if it can guess T . As this value is random, this happens with negligible probability, completing
the proof.

6 Implementation
We have implemented all the theoretical ideas discussed above in CompGC2, a new system for secure compu-
tation with preprocessing. Here we describe the implementation in detail, and in the next section we present
performance numbers from our experimental results.

CompGC uses as its primary building block the libgarble3 library, which is based on the JustGarble
implementation of Bellare et al. [4]. libgarble does just what its name implies — it creates a garbled
version of a specified circuit and evaluates that circuit given inputs. It is a tool, rather than a complete
implementation of secure computation. It does not carry out the oblivious transfers (OTs) necessary to share
input, or the networked interactions necessary to send the garbled circuit (or the information for the OT
protocols, or the output) between parties.

As libgarble is based on JustGarble, we made several improvements to the code, including cleaning up
the API, improving the structures for storing the garbled circuit, etc. With these modifications, we can now
evaluate an AES circuit in around 17 cycles/gate, a computation that takes around 22 cycles/gate on the

2https://github.com/aled1027/2pc
3https://github.com/amaloz/libgarble
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same hardware with the original JustGarble implementation, an improvement of around 22%. Note that,
while implemented in libgarble, we do not use the half-gates approach of Zahur et al. [31], which reduces
the size of each garbled gate to two labels at the cost of two calls to the hash function H during evaluation.
We instead use a scheme which requires three labels be transferred but only one call to H during evaluation.
As we are only concerned with the online time, the benefits of a smaller circuit are outweighed by the extra
cost in evaluation.

We then use libgarble to build CompGC. CompGC has both an offline and an online phase. In the offline
phase, CompGC is given a library of components and computes a specified number of each component. This
library could be small and special-built for a certain class of functions, or it could be a huge library of many
common computational steps, to allow faster online computation of most realistic functions.

In the offline phase, the garbler side of CompGC uses libgarble to generate and garble the component
circuits. The garbler saves the garbled component circuits, each tagged with a unique ID, and input and
output labels to disk. The garbler side also sends the garbled component circuits and their unique IDs to the
evaluator side, which saves the received data to disk. The offline phases finishes by performing the offline
portion of OT preprocessing as described by Beaver [3].

We specify the function that the garbler and evaluator compute in the online phase with a JSON file. The
file specifies what types of components are needed for the computation, and how the components’ input and
output wires should be connected. (Another format could be used to gain a small efficiency improvement,
but we value the fact that the JSON file is human-readable.)

The garbler receives this function and the garbler’s input to the function at the beginning of the online
phase. It then generates a set of instructions for the evaluator. The instructions specify particular pre-
shared garbled circuits (by ID, rather than just by type). The instructions also specify an order for their
evaluation and specify how to feed the outputs of one component into the inputs of others. (This requires
both specifying what wires connect where and specifying the relevant mask for each pair of components that
are being connected. This is done using the SCMC connection techniques described in the previous section.)
Finally, the instructions include the necessary information to convert the output wire labels to bits, as well
as the wire labels for the garbler’s input. The garbler sends these instructions to the evaluator.

Next, the garbler and evaluator perform the online phase of preprocessed oblivious transfer, resulting in
the evaluator having input labels corresponding to its input. The evaluator now has all of the information
necessary to perform the computation. It evaluates each component using libgarble (in an order specified
by the instructions), and computes the input labels for each component from either input labels or processing
the output of a previous component. Finally, the evaluator computes the final output (and can then send it
back to the garbler).

7 Experimental results
We compared CompGC with the traditional setting where the entire circuit is transferred online. We imple-
mented a semi-honest protocol using libgarble in which the parties preprocess OTs in an offline stage, but
the circuit garbling and transfer is done online. This is the closest setting to our work, as we assume that
the parties do not know which circuit they would like to compute until the online stage.
Experimental setup. All experiments were run on an Intelr CoreTM i5-4210H CPU, and were conducted
over two network settings. The first involved running both parties on the default localhost configuration,
which on our machine has a latency of 0.012 ms and bandwidth of 35.2 Gb/sec. For the second network
setting, we used the built in Linux emulator netem to configure localhost to have a latency of 33 ms (the
average latency in the United States [1]) and a bandwidth of 50 Mbits/sec (more than the average bandwidth
of 31 Mbits/sec in the United States as of September 2014 [2]). We chose to use a simulated network due to
the ease of controlling the latency and bandwidth as well as the ease of reproducibility. Our implementation
also requires reading data from disk: on our experimental machine we measured the cached reads speed as
7.6 GB/sec and the buffered disk reads speed as 96 MB/sec.

We ran four experiments: AES, CBC mode, and Levenshtein distance using both 30 and 60 symbols. We
discuss each experiment in turn.
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Figure 1: Levenshtein core circuit (taken from Figure 5(c) from the work of Huang et al. [12]).

Time (localhost) Time (simulated network) Total communication
Naive CompGC Naive CompGC Naive CompGC

AES 2.8 ± 0.03 ms 2.6 ± 0.2 ms 545 ± 0.5 ms 68 ± 0.1 ms 24 Mb 567 Kb
CBC mode AES, 10 blocks 36.8 ± 6.8 ms 21.5 ± 1.3 ms 4.8 ± 0.005 s 219 ± 1.2 ms 237 Mb 2.6 Mb

Levenshtein, 30 symbols 13.7 ± 0.2 ms 24.7 ± 1.0 ms 2.2 ± 0.0 s 318 ± 1.1 ms 108 Mb 6.3 Mb
Levenshtein, 60 symbols 69.6 ± 1.3 ms 67.0 ± 1.2 ms 10.6 ± 0.007 s 752 ± 1.8 ms 523 Mb 25 Mb

Table 2: Experimental results; see Section 7 for the experimental setup. Naive denotes our implementation of
standard semi-honest 2PC using garbled circuits and preprocessed OTs using libgarble, whereas CompGC denotes
our component-based implementation. Time is (online) computation time, not including the time to preprocess OTs,
but including the time to load data from disk. All timings are of the evaluator’s running time, and are the average of
100 runs, with the value after the ± denote the 95% confidence interval. The communication reported is the number
of bits received by the evaluator.

AES: We treat each round of AES as a separate component. Thus, computing AES involves linking together
10 components (for each of the 10 rounds of AES when considering 128-bit inputs).

CBC mode: This algorithm provides a way of encrypting variable length messages using a blockcipher (in
our case, AES) as an underlying building block. We use the same single-AES-round components as the
above experiment, along with an XOR component. Our experiment involves running CBC mode over
a 10 block message, and thus we use 110 components (100 for the AES rounds and 10 for the XOR
components).

Levenshtein distance: This algorithm provides a measure of distance between two strings. We use as the
core component the Levenshtein core circuit as explained by Huang et al. [12]; see also Figure 1. We
use an 8-bit alphabet and run Levenshtein distance over strings containing both 30 and 60 symbols,
which corresponds to 900 and 3600 components, respectively.

We note that these experiments are just a sample of what can be done using our tool. While the components
we use are particular to our experiments, we note that, for example, an AES circuit could be used in other
systems besides just CBC mode (e.g., any function that uses a blockcipher). Likewise, we could break the
Levenshtein core circuit into its components (such as 2-MIN and AddOneBit; see Figure 1) which can likely
be used in other circuit constructions.

Experimental results. Table 2 presents the results of the above experiments over both localhost and
our simulated network. We compare the running times of both standard semi-honest secure two-party
computation with the OTs preprocessed, which we denote as Naive, and our component-based garbled circuit
protocol, which we denote as CompGC. We execute 100 runs of each experiment, reporting the average and
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Time (localhost) Time (simulated network)
Naive CompGC Naive CompGC

AES 2.8 ± 0.03 ms 1.1 ± 0.09 ms 545 ± 0.5 ms 67 ± 0.05 ms
CBC mode AES, 10 blocks 36.8 ± 6.8 ms 8.6 ± 0.5 ms 4.8 ± 0.005 s 204 ± 0.2 ms

Levenshtein, 30 symbols 13.7 ± 0.2 ms 14.8 ± 1.0 ms 2.2 ± 0.0 s 305 ± 0.2 ms
Levenshtein, 60 symbols 69.6 ± 1.3 ms 29.6 ± 0.6 ms 10.6 ± 0.007 s 709 ± 1.6 ms

Table 3: Experimental results without counting the evaluator time to load data from disk. See Table 2 for a
description of the table.

Time (simulated network) Total communication
Standard SCMC Standard SCMC

AES 135 ± 0.2 ms 68 ± 0.1 ms 656 Kb 567 Kb
CBC mode AES, 10 blocks 324 ± 1.1 ms 219 ± 1.2 ms 7.4 Mb 2.6 Mb

Levenshtein, 30 symbols 373 ± 1.0 ms 318 ± 1.1 ms 10.0 Mb 6.3 Mb
Levenshtein, 60 symbols 1131 ± 2.4 ms 752 ± 1.8 ms 44 Mb 25 Mb

Table 4: Comparison of our two approaches for communicating linked values: the standard approach (cf. Section 4)
and the SCMC approach (cf. Section 5). The experiments are run on the simulated network as explained in Section 7;
see Table 2 for description of the table.

the 95% confidence interval. We can see that when running on localhost, the timings are somewhat similar
(Naive even beats CompGC for the case of Levenshtein distance using 30 symbols.) This is because in this
setting communication is not the bottleneck, and thus the main benefit of our approach is not utilized.
However, we can see the drastic improvement when considering a simulated network. Here we see an order
of magnitude improvement of CompGC over Naive for CBC mode and Levenshtein using 60 symbols, as
well as significant improvements for the other two cases. We can see why this is the case by looking at
the total communication of each approach; CompGC demonstrates the greatest time improvement for those
experiments with the greatest communication improvement.

Table 3 is similar to Table 2, except we remove the time to load the circuit components from disk from
the evaluator’s overall running time. This gives CompGC only a small improvement over CompGC in Table 2
on the simulated network, as the time to load data from disk is amortized away by the communication time.
However, when running on localhost we see a significant improvement. This is because, as the communication
time is minimal in this setting, the time it takes to load data from disk becomes the bottleneck.

Finally, Table 4 compares our first approach to chaining components discussed in Section 4 (termed the
“standard” approach in the table) with the SCMC approach discussed in Section 5, again using the simulated
network. We see an average of a 53% improvement of running time across all experiments when using SCMC
over the standard approach. This is again due to the communication savings that result from only sending
a single correction wire per component rather than one per output/input wire.

From these experiments, we confirm the belief that communication is the bottleneck for semi-honest
secure two-party computation based on garbled circuits, and demonstrate that component-based garbling
provides a powerful technique for reducing this bottleneck.

8 Conclusion
Our new technique, component-based garbled circuits, has greatly reduced online computation time for
secure two-party computation. For functions we tested, the time needed for computation was reduced by
an order of magnitude or more. This is done by drastically decreasing the amount of data that must be
communicated during the online phase. While in principle one could construct functions for which our
technique is unlikely to produce more than 50% savings with any realistic set of precomputed components,
the benefit for realistic functions is much, much greater.
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We have shown this in several cases where the general type of function is known ahead of time, but the
specifics (e.g., input length) are not. However, the principle itself has much wider application than this. To
make full use of our technique, libraries of circuits must be designed. These could be application-specific
libraries for certain domains of computation, or there could be large, general-purpose libraries meant to
provide useful components for most functions. Designing these sorts of libraries would also allow careful
optimization of circuit size for each component.

We work only in the two-party and semi-honest settings, but multi-party and malicious settings could
be amenable to a similar technique. We leave the task of designing specific protocols for these settings as
future work.
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